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• The  toxicokinetic  behavior  of  �-KgCN  in  swine  was  investigated.
• Measuring  plasma  �-KgCN  provides  definitive  confirmation  of  cyanide  exposure.
• Treatment  of  cyanide  poisoning  with  cobinamide  renders  �-KgCN  an  ineffective  diagnostic  marker.
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a  b  s  t  r  a  c  t

Poisoning  by  cyanide  can be verified  by analysis  of the  cyanide  detoxification  product,  �-ketoglutarate
cyanohydrin  (�-KgCN),  which  is  produced  from  the  reaction  of  cyanide  and  endogenous  �-ketoglutarate.
Although  �-KgCN  can  potentially  be used  to  verify  cyanide  exposure,  limited  toxicokinetic  data  in
cyanide-poisoned  animals  are  available.  We,  therefore,  studied  the  toxicokinetics  of  �-KgCN  and  com-
pared  its  behavior  to  other  cyanide  metabolites,  thiocyanate  and  2-amino-2-thiazoline-4-carboxylic
acid  (ATCA),  in  the  plasma  of  31  Yorkshire  pigs  that  received  KCN  (4  mg/mL)  intravenously  (IV)
(0.17  mg/kg/min).  �-KgCN  concentrations  rose  rapidly  during  KCN  administration  until  the  onset  of
apnea,  and  then  decreased  over  time  in  all groups  with  a half-life  of 15 min.  The  maximum  concentrations
of  �-KgCN  and  cyanide  were  2.35 and  30.18  �M,  respectively,  suggesting  that  only  a  small  fraction  of
the  administered  cyanide  is converted  to  �-KgCN.  Although  this  is  the  case,  the  �-KgCN  concentration
increased  >100-fold  over  endogenous  concentrations  compared  to  only  a three-fold  increase  for  cyanide
and ATCA.  The  plasma  profile  of  �-KgCN  was  similar  to that  of  cyanide,  ATCA,  and  thiocyanate.  The
results  of  this  study  suggest  that  the use  of  �-KgCN  as  a  biomarker  for  cyanide  exposure  is  best  suited
immediately  following  exposure  for  instances  of  acute,  high-dose  cyanide  poisoning.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Cyanide can be found in food (Vetter, 2000), smoke from fires
(Becker, 1985; Brenner et al., 2010a; Purser et al., 1984), and
cigarettes (Xu et al., 2011, 2012), and industrial facilities (Ma  and
Dasgupta, 2010; Smith et al., 2010; Zdrojewicz et al., 1996). It is
easily procured and could be used as a weapon of mass destruc-
tion (Viswanath and Ghosh, 2010). Human exposure to cyanide

Abbreviations: �-KgCN, �-ketoglutarate cyanohydrin; �-Kg, �-ketoglutarate.
∗ Corresponding author at: Department of Chemistry and Biochemistry, South

Dakota State University, Box 2202, Brookings, SD 57007, USA. Tel.: +1 605 688 6698;
fax:  +1 605 688 6364.

E-mail address: brian.logue@sdstate.edu (B.A. Logue).

produces toxic effects by binding to the iron and copper in the
active site of cytochrome c oxidase, thereby inhibiting the enzyme
(Baskin et al., 2004). Depending on the dose, this can result in his-
totoxic anoxia (Baskin et al., 2004), cellular hypoxia (Conn, 1978),
respiratory failure (Conn, 1978; Fasco et al., 2007; Way, 1984), and
eventual death. Because cyanide is a rapidly acting poison, and
cyanide exposure is relevant to both the military and public sec-
tors, toxicokinetic information on cyanide and its detoxification
products is important for understanding the behavior of cyanide
following exposure. Cyanide can be metabolized and detoxified
through a number of routes, including those outlined in Fig. 1.
The two major routes of cyanide detoxification are conversion to
thiocyanate in the presence of a sulfur donor (Ansell and Lewis,
1970; Baskin et al., 2004) and production of 2-amino-2-thiazoline-
4-carboxylic acid (ATCA) from reaction with cystine (Ansell and
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Fig. 1. Cyanide metabolism and detoxification pathways.

Lewis, 1970; Nagasawa et al., 2004). As an alternative detoxifica-
tion pathway, cyanide can react with endogenous �-ketoglutarate
(�-Kg) to form �-ketoglutarate cyanohydrin (�-KgCN) (Baskin
et al., 2004; Baskin and Brewer, 1997) in animals. This detoxi-
fication pathway is likely important when the thiocyanate and
ATCA pathways are overwhelmed, and will be investigated in this
study.

Evaluation of the toxicokinetic behavior of cyanide and its
breakdown products provides insight into the best marker for ver-
ification of cyanide exposure. Such studies have been conducted
for cyanide (Dirikolu et al., 2003; Leuschner et al., 1991; Sousa
et al., 2003) and its major detoxification products, thiocyanate
(Leuschner et al., 1991; Sousa et al., 2003) and ATCA (Petrikovics
et al., 2012), in various animal models. The results of these studies
are presented in Table 1. Leuschner et al. (1991) investigated the
toxicokinetics of cyanide in rats following acute potassium cyanide
exposure by gavage at 1.0 mg  KCN/kg body weight. The time of
peak concentration (Tmax), 2 min, suggests that cyanide is rapidly
distributed with this mode of exposure. Leuschner et al. (1991) also
performed a chronic cyanide exposure study over a 13-week period.
In that study, the blood cyanide concentrations ranged from 16.0 to
25.5 �M and the thiocyanate plasma concentrations ranged from
341 to 877 �M for rats given KCN at 160 mg/kg body weight per day
in drinking water. The results of the 13-week study suggested that

Table 1
Toxicokinetic parameters for cyanide, thiocyanate, and ATCA in rats and swine. Cmax,
Tmax, and t1/2 are designated as the peak blood or plasma concentration, peak time,
and elimination half-life, respectively.

Species Analytea Cmax (�M) Tmax (min) t1/2 (min)

Rats Cyanide 6.2b, 89.0c 2b, 15c 14b, 38c

Thiocyanate 58.1c 360c 348c

ATCA 18.5d 120d 150d

Swine Cyanide 57.5c 30c 32c

Thiocyanate 42.8c 360c 297c

a Cyanide was  analyzed from whole blood, and thiocyanate and ATCA were ana-
lyzed from plasma.

b Leuschner et al. (1991).
c Sousa et al. (2003).
d Petrikovics et al. (2012).

chronic cyanide exposure at the dose used does not lead to satu-
ration of cyanide detoxification pathways (Leuschner et al., 1991).
Sousa et al. (2003) evaluated the toxicokinetics of blood cyanide
and plasma thiocyanate in rats and pigs following oral potassium
cyanide exposure at 3.0 mg  KCN/kg body weight; over a 24 h period,
blood cyanide concentrations ranged from 0.5 to 89.0 �M and 1.0 to
57.5 �M,  and thiocyanate plasma concentrations ranged from 19.0
to 58.1 �M and 18.0 to 42.8 �M,  in rats and pigs respectively. The
results of this study suggest that about 65–75% of absorbed cyanide
is converted to thiocyanate, which is in close agreement with the
80% predicted by Ansell and Lewis (1970). Petrikovics et al. (2012)
studied the toxicokinetics of ATCA in rats following intravenous (IV)
injection of ATCA at 100 mg/kg body weight. Although this study
did not address the in vivo generation of ATCA from cyanide expo-
sure, it is one of the first studies to address the distribution and
elimination of ATCA. The plasma ATCA ranged from 0.96 to 18.5 �M,
and showed a consistent 5-fold increase over endogenous concen-
trations between 2.5 and 48 h post-exposure (Petrikovics et al.,
2012). These findings suggest that the use of ATCA as a biomarker
is promising, but further evaluation of the toxicokinetics of ATCA
following cyanide exposure should be undertaken.

Recently, Mitchell et al. (2013) established an analytical method
to quantify the cyanide detoxification product, �-KgCN, but a tox-
icokinetic profile of �-KgCN following cyanide exposure has not
been performed. Knowledge of �-KgCN’s toxicokinetic profile will
provide a better understanding of cyanide’s absorption and elimi-
nation by this alternative pathway and might show that �-KgCN has
advantages over other markers of cyanide exposure for verification
of cyanide exposure. Therefore, we  completed a toxicokinetic anal-
ysis of �-KgCN in potassium cyanide-exposed swine and compared
it with data for cyanide and its other detoxification products. We
also studied the behavior of cyanide and its detoxification products
during administration of cobinamide, a next-generation treatment
for cyanide exposure (Brenner et al., 2010a,b; Broderick et al., 2006;
Chan et al., 2010, 2011; Zou et al., 2012). Furthermore, �-Kg has
been suggested as a cyanide antidote (Bhattacharya et al., 2002;
Bhattacharya and Vijayaraghavan, 1991, 2002; Hume et al., 1995;
Mathangi et al., 2011; Norris et al., 1990; Tulsawani et al., 2005),
and the results of this study may  be important for �-Kg therapeutic
studies.
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2. Experimental

2.1. Reagents and materials

All reagents and materials were at least HPLC grade. �-KgCN and �-KgCN-d4

were synthesized as previously reported (Mitchell et al., 2013). Labeled thiocyante
(NaS13C15N) and cyanide (Na13C15N) were acquired from Isotech (Miamisburg, OH).
Labeled ATCA-d2 was  synthesized in the lab of Dr. Nagasawa at the Department of
Veterans Affairs Medical Center (Minneapolis, MN). Aquohydroxocobinamide was
synthesized as described previously, and converted to a dinitro derivative by adding
two  molar equivalents of sodium nitrite (Chan et al., 2010, 2011). Sodium cyanide,
sodium tetraborate decahydrate, sodium hydroxide, and Millex®-GV syringe filters
(0.22 �M)  were purchased from Fisher Scientific (Fair Lawn, NJ). Sodium thiocyanate
was  obtained from Acros Organics (Morris Plains, NJ). Formic acid (LC/MS grade) and
pentafluorobenzyl bromide (PFB-Br) were obtained from Thermo Scientific (Rock-
ford, IL). Tetrabutylammonium sulfate (TBAS) was purchased from Sigma–Aldrich
(St. Louis, MO). ATCA was  obtained from Chem-Impex International (Wood Dale, IL).
Oasis mixed-mode cationic exchange (MCX) columns were acquired from Waters
Corporation (Milford, MA). N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA)
was  acquired from Pierce Chemical Company (Rockford, IL).

2.2. Animal studies

The animal studies were conducted at Wilford Hall Medical Center (Lackland
Air Force Base, TX) in accordance with The Guide for the Care and Use of Laboratory
Animals, and were approved by the Wilford Hall Clinical Research Division Institu-
tional Animal Care and Use Committee; Wilford Hall is accredited by the American
Association for Laboratory Animal Science. A total of 31 Yorkshire pigs (∼50 kg)
were sedated, intubated, and anesthetized with isoflurane. KCN was injected intra-
venously at 0.17 mg/kg/min until apnea occurred. At one minute post-apnea, the
animals received either saline by IV injection (control group, N = 11) or 12.5 mg/kg
cobinamide by IV (N = 10) or intraosseous (IO) (N = 10) injection. Arterial blood was
sampled prior to cyanide exposure, 5 min  after the start of cyanide infusion, at apnea,
and at 2, 4, 6, 8, 10, 20, 30, 40, 50, and 60 min  post-apnea. EDTA was  added to an
aliquot of blood, and the plasma was separated from the red blood cells by cen-
trifugation and shipped on ice to South Dakota State University. Upon receipt, the
EDTA-treated plasma was frozen and stored at −80 ◦C until used.

2.3. Preparation and analysis of swine plasma for ˛-KgCN

Plasma was  prepared and analyzed for �-KgCN according to a previously estab-
lished method (Mitchell et al., 2013). Briefly, 1% formic acid in acetonitrile was
added to the plasma, and the precipitate was removed by centrifugation. The result-
ing  supernatant was  concentrated by drying under N2(g) and then reconstituted
in aqueous formic acid. The reconstituted sample was  analyzed using ultrahigh-
performance liquid chromatography tandem mass spectrometry, and �-KgCN was
quantified by monitoring the 172.0 to 145.1 m/z transition.

2.4. Preparation and analysis of swine plasma for cyanide and thiocyanate

Cyanide and thiocyanate were measured simultaneously according to Bhandari
et  al. (2012). Briefly, tetrabutyl ammonium sulfate and pentafluorobenzyl bromide
(PFB-Br) were added to plasma, followed by vortexing for 2 min, and heating at
70 ◦C for 1 h. Samples were then centrifuged at 9300 × g for 4 min, and the organic
layer was analyzed by chemical ionization gas-chromatography mass-spectrometry
(GC–MS) with ions 208 and 240 m/z selected for quantification of PFB-CN and PFB-
SCN, respectively.

2.5. Preparation and analysis of swine plasma for ATCA

Plasma was  analyzed for ATCA according to Logue et al. (2005). Briefly, proteins
were precipitated from the plasma by addition of 1% HCl in acetone (v/v). The super-
natant was diluted with 0.1 M HCl and applied to a mixed-mode cation exchange
solid phase extraction column. After washing the column, ATCA was  eluted using
NH4OH:CH3OH:H2O (25:50:25) in 0.1 M HCl, and the samples were dried at 40 ◦C.
MSTFA in hexane (30% v/v) was  added to the dried samples, and they were heated
at 50 ◦C for 1 h to chemically modify ATCA to ATCA-(TMS)3 for GC–MS analysis with
ion 362 m/z  used for quantification.

2.6. Toxicokinetic and data analysis

Toxicokinetic parameters were determined according to methods described by
the World Health Organization (1986) and Shargel et al. (2005). Analysis of �-KgCN
was  completed with a one-compartment model, with Cmax, Tmax, t1/2 and elimina-
tion constants (Ke) obtained from the concentration-time curves. Area under the
curve ([AUC]) after apnea was also determined from the concentration-time curve
using the trapezoidal rule (Shargel et al., 2005). Cmax/Cbaseline was  determined by
dividing the maximum plasma concentration by the baseline concentration. The
�-KgCN data for the cobinamide and control animals were analyzed with a one-
way  analysis of variance and Bartlett’s test for equal variances, which showed a

Fig. 2. Toxicokinetic profile of �-KgCN in control, IV cobinamide-treated, and IO
cobinamide-treated swine. Apnea, pre-exposure and 5 min  infusion sample points
are  designated as “time 0, −10, and −5”, respectively. The plasma sampled at time
zero was  drawn prior to treatment, the −10 time point was obtained before infu-
sion  and the −5 time point was collected 5 min after exposure. Error bars denote
standard error of the mean (SEM). Inset: “zoomed” representation of the plasma
concentrations from 2 to 20 min post-apnea.

significance difference among the three groups. Therefore, two-tailed unpaired t-
tests with Welch’s correction were applied to each time point to evaluate statistical
differences between the groups.

3. Results

3.1. Behavior of ˛-KgCN after cyanide exposure

The plasma �-KgCN concentration similarly increased in all
three experimental groups during cyanide infusion, but decreased
with different kinetics after cyanide was stopped (at the onset of
apnea) and cobinamide was  injected (Fig. 2). In the control saline-
treated group (solid line), the �-KgCN concentration showed a
typical exponential decrease for the duration of the experiment.
In the group treated with IV cobinamide (dashed line), �-KgCN
concentrations showed a more rapid decrease compared to the con-
trol group. In the group treated with IO cobinamide (dotted line),
the �-KgCN concentrations fell at a similar rate to the IV-treated
group, but the concentrations did not fall quite as low and were
still well above baseline up to 10 min  post-apnea. Significant differ-
ences between the control and IV cobinamide-treated groups were
observed at all points except −5 and 0 min. Significant differences
between control and IO cobinamide-treated groups were observed
at −10, −5, 20, 30, and 50 min. In contrast, significant differences
between the IV and IO cobinamide-treated groups were only found
pre-apnea.

3.2. Comparison of the toxicokinetic profile of ˛-KgCN, cyanide,
thiocyanate, and ATCA

The toxicokinetic profile of �-KgCN, ATCA, and cyanide in
control animals were generally similar, with the exception that
plasma cyanide concentrations were considerably higher com-
pared to ATCA and �-KgCN (Fig. 3). Also to be noted is that plasma
ATCA did not decrease as rapidly as �-KgCN, likely because ATCA
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Fig. 3. Toxicokinetic profile of �-KgCN, cyanide, thiocyanate, and ATCA in control
swine. Apnea, pre-exposure and 5 min  infusion sample points are designated as
“time 0, −10, and −5”, respectively. The plasma sampled at time zero was  drawn
prior to treatment, the −10 time point was obtained before infusion and the −5 time
point was collected 5 min  after exposure. Error bars denote SEM.

formation is not an equilibrium reaction, as is production of �-
KgCN. Thiocyanate behaved quite differently compared to the other
cyanide exposure markers, decreasing directly after apnea (2 and
4 min) and then rising gradually for the duration of the experiment
(Fig. 3).

In the animals treated with IV cobinamide, cyanide, thio-
cyanate, ATCA and �-KgCN showed the typical increase in
concentration prior to apnea as cyanide was being absorbed and
distributed (Fig. 4). However, cyanide concentrations increased
sharply at 2 min  post-apnea and then decreased. ATCA concentra-
tions increased until 4 min  post-apnea, before starting to decrease.
Thiocyanate and �-KgCN concentrations both decreased immedi-
ately following apnea, but thiocyanate then gradually increased
starting at 2 min  post-apnea.

Fig. 4. Toxicokinetic profile of �-KgCN, cyanide, thiocyanate, and ATCA in IV
cobinamide-treated swine. Apnea, pre-exposure and 5 min  infusion sample points
are  designated as “time 0, −10, and −5”, respectively. The plasma sampled at time
zero was  drawn prior to treatment, the −10 time point was  obtained before infusion
and  the −5 time point was collected 5 min  after exposure. Error bars denote SEM.

Table 2
Toxicokinetic parameters for �-KgCN, cyanide, and ATCA in control animals follow-
ing IV-infusion of KCN (0.17 mg/kg/min) until apnea.

Analyte Cmax (�M) t1/2 (min) Ke [AUC] (�M min) Cmax/Cbaseline

�-KgCN 2.35 15 0.0462 25.6 102.2
Cyanidea 30.18 27 0.0258 474.4 3.1
ATCAa 4.73 14 0.0499 75.4 3.4

a The toxicokinetic data for cyanide and ATCA in swine plasma will be reported
by  Bhandari et al.

3.3. Toxicokinetics of ˛-KgCN, cyanide, and ATCA

Toxicokinetic parameters for �-KgCN, cyanide and ATCA in con-
trol animals are presented in Table 2; values for thiocyanate could
not be determined due to the increasing concentrations observed
after apnea. A one-compartment model best represents the toxi-
cokinetic behavior of �-KgCN post-apnea, similar to Bhandari et al.
(Publication pending) for cyanide and ATCA. �-KgCN, cyanide, and
ATCA all exhibited Tmax at apnea (0 min). Among all the mark-
ers, cyanide provided the highest t1/2 and Cmax values (although
both could not be determined for thiocyanate). �-KgCN and ATCA
produced similar toxicokinetic values.

4. Discussion

The increase in plasma �-KgCN concentrations before apnea,
when cyanide is being infused, shows that a portion of the cyanide
administered is quickly converted to �-KgCN. After apnea, when
the cyanide infusion is stopped, the metabolism and distribution of
cyanide dominates and �-KgCN concentrations rapidly decrease.
Because �-KgCN formation is an equilibrium reaction (Fig. 1),
the rapid decrease in cyanide rapidly consumes �-KgCN as the
equilibrium favors the reactants. The sudden decrease in �-KgCN
levels in the IV and IO cobinamide-treated animals post-apnea was
expected considering that cobinamide was administered just after
apnea. Cobinamide has a high affinity for two  cyanide ions (Brenner
et al., 2010b), and, therefore, free cyanide in the plasma is rapidly
sequestered after treatment, causing a decrease in free cyanide,
which leads to the consumption of �-KgCN as the equilibrium shifts
toward the production of �-Kg and cyanide (Fig. 1).

Comparing the cobinamide-treated groups to the control ani-
mals, the main difference occurs immediately following apnea,
when plasma cyanide sharply increases and �-KgCN sharply
decreases. The increase in cyanide and decrease of �-KgCN in the
treated animals is likely the result of rapid cyanide extraction from
the red blood cells into the plasma through cobinamide sequestra-
tion of cyanide (Nath et al., 2013). This phenomenon would result
in less free cyanide in the plasma even though the total (free and
sequestered) cyanide concentration increases. The sequestration of
cyanide causes a sudden decrease in �-KgCN concentrations. ATCA
also showed an increase in concentration until about 4 min post-
apnea, which could be explained by conversion of small amounts
of free cyanide released by dicyano cobinamide or aquocyanocobi-
namide (Blackledge et al., 2010).

Thiocyanate also showed interesting behavior in the control and
cobinamide-treated animals. The increase in thiocyanate concen-
trations, as cyanide is infused into the animal, is expected because
of the large fraction of cyanide converted to thiocyanate as the
major detoxification pathway of cyanide (Ansell and Lewis, 1970;
Baskin et al., 2004; Sousa et al., 2003). After the infusion is stopped, a
sudden decrease in the thiocyanate concentration occurs, because
less free cyanide is available and the combination of thiocyanate
distribution and elimination is more rapid than the conversion
of cyanide to thiocyanate. Over time, the rate of conversion of
cyanide to thiocyanate increases as rhodanese’s activity increases
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(rhodanese is the enzyme mainly responsible for enzymatic conver-
sion of cyanide to thiocyanate) (Wrobel and Frendo, 1992; Wrobel
et al., 2004). After 2–4 min, thiocyanate elimination is not fast
enough to match the rate of conversion of cyanide to thiocyanate,
causing a buildup of thiocyanate in the plasma (Wrobel and Frendo,
1992; Wrobel et al., 2004). Chan et al. (2010) also observed an
increase in plasma thiocyanate concentrations as cyanide was
released from red blood cells and converted to thiocyanate.

We  found a statistical difference between the �-KgCN concen-
trations of the control and cobinamide-treated animals, suggesting
that �-KgCN is eliminated from the plasma at a faster rate
when cobinamide is administered. Animals receiving IV cobi-
namide showed the fastest elimination of �-KgCN from the
plasma, but it was certainly comparable to that in animals receiv-
ing IO cobinamide, suggesting the two routes of administration
allowed similar distribution profiles for cobinamide. Previous stud-
ies conducted in Gottingen minipigs have shown that IO- and
IV-administration of the cyanide antidote, hydroxocobalamin, to
non-cyanide-poisoned animals produce similar distribution pro-
files (Murray et al., 2012). Significant differences were also seen
pre-apnea in all groups, which can be explained due to interanimal
variability.

Comparison of the toxicokinetic parameters of �-KgCN to those
of cyanide and ATCA (Table 2), shows that �-KgCN behaves simi-
larly to ATCA, although ATCA had the largest Ke value, suggesting it
is eliminated faster from the plasma than cyanide or �-KgCN. Com-
parison of the [AUC] values, establishes that �-KgCN had the lowest
overall plasma concentrations throughout the study, supported by
its fast rate of elimination, low Cmax concentrations, and low base-
line concentrations. We  will present a more detailed description of
the toxicokinetic behavior of cyanide, thiocyanate and ATCA in a
future publication.

Plasma concentrations of �-KgCN were relatively low in all ani-
mals compared to cyanide and thiocyanate because a relatively
low amount of cyanide was detoxified by the �-KgCN pathway.
It has been suggested that about 80% of cyanide is converted
to thiocyanate in the presence of a sulfur donor (Ansell and
Lewis, 1970; Baskin et al., 2004; Sousa et al., 2003) and another
15–20% of cyanide is metabolized by l-cystine to produce ATCA
(Ansell and Lewis, 1970). This would suggest that only a small
percentage of cyanide is converted to other detoxification prod-
ucts in non-treated (control) animals, including cyanocobalamin
(Astier and Baud, 1995; Butte et al., 1982; Chatzimichalakis et al.,
2004) and cyanide-protein adducts (Fasco et al., 2007; Youso
et al., 2010, 2012), which is consistent with the low plasma
concentrations of �-KgCN. Based on the measured �-KgCN con-
centrations and detoxification of cyanide by the thiocyanate and
ATCA pathways, we estimate that about 0.1–1.7% of the cyanide
dose was converted to �-KgCN. This estimation was done by
dividing the maximum concentrations of �-KgCN by the total max-
imum concentrations of cyanide, thiocyanate, ATCA and �-KgCN of
cobinamide-treated and control animals after factoring in the dis-
tribution of cyanide between red blood cells and plasma (70–96% of
blood cyanide resides in the red blood cells (Baar, 1966; Lundquist
et al., 1985). The percentage of cyanide in plasma increases as
the cyanide dose increases, because the red blood cells become
saturated with cyanide (Lundquist et al., 1985). Further studies
(i.e., radioisotope experiments) would have to be undertaken to
accurately calculate how much cyanide participates in the �-KgCN
pathway.

This study suggests that use of �-KgCN as a biomarker for
cyanide exposure would be most applicable in instances of acute,
high-dose cyanide poisoning soon after exposure. The major
advantage of using �-KgCN as a marker for cyanide exposure is
the low, if not undetectable, levels of endogenous �-KgCN in the
plasma, making cyanide exposure easy to detect from elevated

�-KgCN concentrations. Comparing the maximum cyanide,
thiocyanate, ATCA and �-KgCN plasma concentrations to their
endogenous (baseline) concentrations, shows that �-KgCN has
a much higher Cmax/Cbaseline, suggesting that measuring plasma
�-KgCN can provide a definitive confirmation of cyanide exposure.
Although there are several potential advantages of �-KgCN as a
cyanide exposure marker, its rapid elimination, especially in the
presence of cobinamide, may  limit its use.

To our knowledge, this work provides the first reported toxi-
cokinetic profile of �-KgCN in any animal. The ability to measure
�-KgCN in plasma would be beneficial in studies using �-Kg as
a cyanide antidote (Bhattacharya et al., 2002; Bhattacharya and
Vijayaraghavan, 1991, 2002; Hume et al., 1995; Mathangi et al.,
2011; Tulsawani et al., 2005). The equilibrium constant for the
formation of �-KgCN (Kf,�-KgCN) was estimated by assuming the
reaction was  at equilibrium at apnea. The �-KgCN concentration
(2.35 �M)  was divided by the remaining cyanide concentration (i.e.,
30.18 �M − 2.35 �M = 27.83 �M)  and the remaining endogenous
�-Kg concentration (i.e., 23.95 �M − 2.35 �M = 21.60 �M (Dabek
et al., 2005)). Based on the calculated equilibrium constant
(Kf,�-KgCN = 3.9 × 10−3), the conversion of �-Kg into �-KgCN is not
favorable. Therefore, the use of �-Kg as a therapeutic may not be
very effective, but further studies would have to be undertaken to
determine �-KgCN’s efficacy in minimizing the lethality of cyanide
following exposure.

Future work should address the absorption, distribution, and
elimination of �-KgCN in other animals to determine the most
appropriate animal model for evaluating the behavior of �-KgCN
in humans following cyanide exposure. Rigorously determin-
ing the Kf,�-KgCN, and the amount of cyanide that participates
in the �-KgCN pathway, would produce a clear picture of the
role of �-Kg in cyanide detoxification, both naturally and as a
therapeutic.
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